Alternating voltage, alternating current

 microprocessor based technology- Free scalable display and setpoints from -999 up to +9999
- Standard: 2 setpoints, min/max memory - optional analogue output
- Mounting into panels with thickness up to 50 mm

Caution!

With high input voltages $100 \mathrm{VAC} / 300 \mathrm{VAC}$, always connect terminal $4(0 \mathrm{~V})$ to N -conductor. Change jumper only in voltage-free state and use an insulated screwdriver when adjusting the potentiometer.

Options

- LED green
- Protection: IP 54 at the front
- Protection: IP 65 at the front
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Plug in terminal with protection IP65
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load 500Ω (12 bit)
- Analog output 4-20 mA/load 500Ω (12 bit)
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load 500Ω (12 bit) (power supply 24 VDC galvanically insulated)
- Analog output 4-20 mA/load 500Ω (12 bit) (power supply 24 VDC galvanically insulated)

With analog output there is no setpoint S1!

- Dimension strip selectable (7 characters max.)
- Other power supplies on demand
- Measuring range 1 A on demand

Technical data

[^0]
Wiring diagram, programming, instructions

Setting

1. Connect the instrument according to the wiring diagram.
2. After power on, the instrument runs into a lamp test and returns back to the standard mode.
3. Connect the desired measuring value to the measuring input.
4. Pressing the P-key enters the program mode with indication of "P1" on the display.
5. Pressing the P-key and (10-key simultaneously steps through the different program numbers .
6. Pressing (10) or $\mathbf{0}$-key shows the current values.
7. To change values use $\mathbf{0}$ - or (10-key.
8. Memorizing of the values under program number 1 and 2 by pressing Plus- and $\mathbf{0}$-key simultaneously. Four transversal bars are indicating memorization.
9. Otherwise the remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard mode for indication of min/max values.

Simultaneously pressing of $\mathbf{0}$ and (10) key deletes and actualizes min/max-memory.
(11) key enters max-memory.
(0 key enters min-memory.

Instructions

After power on the instrument with his inbuilt microcontroller starts with an initialprogram activating lamp test and readout of memorized parameters in an EEPROM. In case of loosing parameters or any defects in hardware the system generates an error message "HELP". This function prevents damage from peripherials and human life, totally reset is required. After a new power on, the system remains in lamp test while pressing P-key. Then the unit storages the default parameters and is ready for new programming.

The unit you have bought provides several different voltages and current inputs as well as optional analog output, relay contacts and open collector setpoints. In order to achieve the maximum value indication of 9999, the following minimum input voltages/currents are required at the various measuring inputs:

Measuring input	2 V	20 V	100 V	300 V	1 A	5 A
$\mathrm{U} / \mathrm{I} \min$	1 V	10 V	50 V	200 V	0.4 A	2.5 A
$\mathrm{U} / \mathrm{I} \max$	3 V	30 V	150 V	300 V	1 A	5 A

The following diagrams are showing the switching operation of PVE4 relay contacts and open collector outputs, the hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Operation current means that the open collector will be pulled in (conducting) if reaching the adjusted setpoint.

Example: quiescent current

Quiescent current means that the open collector will be dropped out (cutoff) if reaching the adjusted setpoint.

Program table, example for programming

Program table 1

Program- Number (PN)	Function	Remark	Basplay after reset	
1	Input of desired indication value	Feed measured magnitude (acknowledged by pressing key P and 0) e.g. 100 V measuring input = final value 3500	-999 to +9999	2000
2	Input of offset for indication value	Feed measured magnitude (acknowledged by pressing key P and 0) e.g. 0.1 A measuring input = initial value 0	-999 to +9999	0
3	Setting of decimal point	Press (10) until desired decimal point is shown		no decimal. point
4	Input of display time	Display time = measuring time Method of measurement integrating	0.1 to 10.0 seconds	1.0
5	Input of final value for analog output	Option	Option	-999 to +9999
6	Input of offset for analog output	2000	-999 bis +9999	0

Program table 2 (setpoints)

S1	S2	Function	Display	Basic parameter after reset
PN	PN			
61	66	Setpoint	-999 to +9999	$500 / 1500$
62	67	Hysteresis	0 to +9999	1
63	68	Quiescent current	0	0
		Operating current	1	-

Example for programming

Measuring input: 100 VAC
Measuring value: $0-80$ VAC
Display:
Displ.refresh time: 2.0 seconds
Setpoints:
S1 ==> 60.0 and quiescent current
open collector conducting $=58.0==>$ hysteresis 2.0
150.0 and operation current
relay drop out $=80.0==>$ hysteresis 70.0
Analog output: $0 \vee$ output $==>$ display $0.0 \quad==>$ measuring value 0 V
(no setpoint S 1) 10 V output $==>$ display $300.0==>$ measuring value 80 V
8.8.8.8

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices:

Pressing the P-key enters always the program mode with program number 1. The "P1" begins to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the standard mode. In program mode pressing 0 or © ${ }^{(10)}$-key selects the current values which are free scalable with both the keys. In program number 1 and $\mathbf{2}$ the memorization will be executed by pressing \mathbf{P} and 0 simultaneously - 4 transversal bars indicate the storage. All the other parameters will be memorized automatically after leaving program mode.

Programming.
Switch power on!
Lamp test
8.8.8.8.

Connect 80 VAC to the measuring input. Enter program mode.

Set free scalable value

Memorize value with \mathbf{P} and $\mathbf{0}$. Take over by display of transversal bars..

To program number 2 with \mathbf{P} and (10)

Connect measuring value 0.0 VAC.
To memorized value with 0 or (10.

Memorize value with \mathbf{P} and $\mathbf{0}$. Take over by display of transversal bars.

Example for programming

To memorized value with $\mathbf{0}$ or (11).

Set decimal point.

To program number 4 with \mathbf{P} and (11).

To memorized value with $\mathbf{0}$ or (10).

Set display time.

The following programming steps are neccessary for the setpoint programming of S1 and S2 only.

To program number 61 with \mathbf{P} and (10.

To memorized value with $\mathbf{0}$ or (11).

Set free scalable value for setpoint S1.

To program number 62 with \mathbf{P} and (10).

To memorized value with $\mathbf{0}$ or (10).

Set hysteresis for S1

To program number 63 with \mathbf{P} and (10.

To memorized value with $\mathbf{0}$ or (11).

To program number 66 with \mathbf{P} and (10.

To memorized value with $\mathbf{0}$ or (10.

Set free scalable value for setpoint S 2 .

To program number 67 with \mathbf{P} and (10.

To memorized value with $\mathbf{0}$ or (11).

Set hysteresis for S2

To program number 68 with \mathbf{P} and (1).

To memorized value with $\mathbf{0}$ or (11).

Set operation current.

Programming finished.
All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To program number 5 with \mathbf{P} and (11).

To memorized value with $\mathbf{0}$ or (11).

Set free scalable final indication value for analogue output.

To program number 6 with \mathbf{P} and (11).

To memorized value with $\mathbf{0}$ or (10).

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

Setting possibilities of the jumper field on the rear side.

(PN61-68 free)

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC analogue input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

